Day 26 - Perfect Squares - 09.23.14

Bell Ringer
  • Remediation Request Form
  1. Find the GCF of 15x2y and 45xy2.

    1. 5xy

    2. 3*5*x*y

    3. 5

    4. 15xy

    5. none of the above

  2. Factor 2x2 - 3xz - 2xy + 3yz.

    1. x(2x - 3z) - y(2x - 3z)

    2. x(2x - 3z) - y(2x + 3z)

    3. (x - y)(2x - 3z)

    4. (2x2 - 3xz) + (-2xy + 3yz)

    5. none of the above

  3. Solve by factoring a2 - 3a - 4 = 0.

    1. a = 1, -4

    2. a = -1, -4

    3. a = -1, 4

    4. a = 1, 4

    5. none of the above

  4. Factor 12x2 + 22x - 14.

    1. (2x  + 1)(3x + 7)

    2. (2x  - 1)(3x - 7)

    3. (2x  - 1)(3x + 7)

    4. (2x  + 1)(3x - 7)

    5. none of the above

  5. Solve by factoring: 12x2 + 22x - 14 = 0.

    1. x = ½ and -7/3

    2. x = -½ and 7/3

    3. x = -½ and -7/3

    4. x = ½ and 7/3

    5. none of the above

Review
  • Monomials
  • Polynomials
  • Adding/Subtracting Polynomials
  • Multiplying Polynomials by Monomials
  • Multiplying Polynomials by Polynomials
  • Special Products
  • Intro to Factoring
  • Factoring x2 + bx + c
  • Factoring ax2 + bx + c

    Lesson
    • Checkpoint Sheets Protocol
    • Factoring Differences of Squares
      • Concepts
        • a2 - b2 = (a + b)(a - b)
        • Factoring Out a Common Factor
        • Grouping Term with Common Factors
      • Section 9-5
        • Practice #5-9 (odds)
        • Checkpoint 1 - #8, 10
        • Practice #11, 13
        • Checkpoint 2 - #12, 14
        • Practice #17-33 (odds)
        • Checkpoint 3 - #18, 30, 32
        • Practice #35-45
        • Checkpoint 4 - #38, 42, 44
    • Perfect Squares and Factoring
      • Concepts
        • Perfect Square Trinomials
        • Square Root Property
      • Section 9-6
        • Practice #7-11
        • Checkpoint 1 - #8, 10
        • Practice #13, 15
        • Checkpoint 2 - #12, 14
        • Practice #23
        • Checkpoint 3 - #24
        • Practice #25-39
        • Checkpoint 4 - #36, 38, 40
        • Practice #43-53
        • Checkpoint 5 - #48, 50, 52

    Exit Ticket
    • Posted on the board at the end of the block
    Lesson Objective(s)
    • How can expressions of the form ax^2 + bx + c be factored?

    Standard(s)


    Mathematical Practice(s)
    • #1 - Make sense of problems and persevere in solving them
    • #2 - Reason abstractly and quantitatively
    • #3 - Construct viable arguments and critique the reasoning of others
    • #6 - Attend to precision
    • #7 - Look for and make use of structure